
1591, 1.0.2, 2025-02-10

®

NPX™ Map CLI
Technical Information

2

Table of contents
1. Introduction ..3

1.1 Olink® Explore Software terminology and documentation3
1.2 Requirements ...3

2. Installation ..4
2.1 Apptainer ...4
2.2 Docker or podman ..4
2.3 Migration guide for explore-cli users ...5
2.4 Panel data archive..5
2.5 Versioning ..6
2.6 Logging ...6
2.7 Verbs ..6

3. Appendix ..13
3.1 Project data file (Apache Parquet) ...13
3.2 Documentation of detailed integer representation of QC status 21
3.3 Documentation of detailed integer representation of systematic effects 22

4. Revision history .. 24

3

1. Introduction
NPX™ Map CLI is a command-line interface (cli) for the Olink® Explore HT and the Olink® Explore 3072 and Reveal. The
application is capable of performing quality control (QC), normalization and CV computations on NGS data and exporting
the results on several supported formats.

Fore Research Use Only. Not for use in diagnostic procedures.

1.1 Olink® Explore Software terminology and documentation
For detailed descriptions of Explore software terminology and output files, please refer to the user guide for [NPX™
Explore HT & 3072 software, which shares the same Explore software library for normalization, QC and output file
generation.

For detailed descriptions of software terminology and output files, please refer to the user guide for NPX™ Map software,
which shares the same software library for normalization, QC and output file generation.

Terminology Description

Pre-processing Conversion of next generation sequencing (NGS) output to counts per
Olink Explore index-barcode sequence.

Plate layout file A csv-file containing sample ID and sample type per well of one 96-well
plate.

Run unit The data found in a single counts file, corresponding to one 96-well plate
and one Explore HT block or one Explore3072/Reveal panel.

1.1.1 Output files
Output file Description

NPX file A parquet-file with one record per combination of sample/control/
external control and assay/internal control.

Extended NPX file A parquet-file containing the same columns as the NPX file with
additional columns.

CLI Data Export file A parquet-file containing the same columns as the extended NPX file with
additional columns and records for empty wells and excluded run units

1.2 Requirements
The program has the following system requirements:

1. A reasonably new Linux operating system. Supported distributions are LTS version of Ubuntu (ex. 22.04 and 24.04)
and RHEL (8, 9). Most other modern Linux distributions should work as well, but are not tested by Olink.

2. Docker/Podman, or Apptainer, depending on which container image is used.

4

2. Installation
The supported ways of running the CLI are with Docker/Podman or Apptainer.

2.1 Apptainer

2.1.1 Installing the container image
Extract the zip file containing the CLI Apptainer .sif image.

The NPX Map CLI container is invoked through the apptainer run command:

apptainer run npx-map-cli.sif info

2.2 Docker or podman

2.2.1 Installing the container image
Extract the zip file containing the CLI Docker image and import it:

docker load npx-map-cli.tar

podman load -i npx-map-cli.tar

The NPX Map CLI container is invoked through the docker run command:

docker run --rm ghcr.io/olink-proteomics/npx-map-cli:<VERSION> info

For podman run the following command:

podman run --rm ghcr.io/olink-proteomics/npx-map-cli:<VERSION> info

where VERSION is the downloaded version of the npx-map-cli such as 1.0.0 .

5

2.2.2 Running the container while bind mounting the host file system
This does not apply to Apptainer workflows.

The following command processes a run definition on json format runs.json and outputs a parquet export file in
the same directory. Please note that relative/absolute file paths referenced in the json file must also exist within the bind
mounted directory for them to be visible to the container. The user argument is necessary to keep the file ownership of the
generated parquet file to the user executing the container. For Podman change docker to podman .

Please see 2.4 Panel data archive about configuring the necessary panel data archive file. This does not apply to Apptainer
workflows.

docker run --rm \
 --mount type=bind,source=”${PWD}”,target=/data \
 -u $(id -u ${USER}):$(id -g ${USER}) \
 ghcr.io/olink-proteomics/npx-map-cli:<VERSION> runs -i /data/runs.json -o /data/
-p /data/NPXMap_PanelDataArchive_<VERSION>.dat

2.3 Migration guide for explore-cli users
Users coming from explore-cli 1.x and 2.x will need to adjust their CLI arguments to be able to use NPX Map CLI.

The differences are as follows:

• The create and export verbs are replaced with the runs verb that takes a json file describing NGS runs and
outputs a NPX parquet file.

• The runs input json file is a subset of the old project json format, old project json files that worked in explore-cli also
work in NPX Map CLI.

• Since there is not dedicated export verb the user must choose the desired NPX output file directly in the runs verb.

• NPX Map CLI manages panel data differently than explore-cli, see 2.4 Panel data archive about Panel Data Archive
files for more details.

Please note that counts folders generated with NPX Map CLI are not compatible for processing with explore-cli 1.x and
2.x.

Counts generated with ngs2counts can still be processed with explore-cli.

2.4 Panel data archive
NPX™ Map CLI requires panel reference data in the form of a Panel Data Archive file in order to perform QC and
normalization on NGS data.

The file is distributed together with the NPX™ Map CLI software.

The archive file can be made accessible to npx map in one of two ways:

• Adding the -p or --panel-data-archive argument to the CLI verbs requiring it. The argument must specify either an
absolute or relative path to the panel data archive file to use.

• Setting the NPX_MAP_PANEL_DATA_ARCHIVE environment variable before running the CLI software. The value
must be a valid absolute file path pointing to the panel data archive file to use.

The info verb can be used to verify that a panel data archive file is correctly configured and display information about
its contents.

6

2.5 Versioning
Panel data archives are versioned in the same manner as the software.

A specific version of the software can utilize panel data archive that is of the same version or higher allowing for running
with newer panel data than was initially provided with the software.

Version strings only differing in the third digit (patch version) are treated as the same version for compatibility checks, i.e.
version 1.0.1 is treated as equal to version 1.0.0 .

The minimumSoftwareVersion specifies how old the software can be and still utilize the panel data archive in
question.

2.6 Logging
The program writes logs to STDOUT that can be redirected to a file if need be. The log level can be controlled with the
environment variable OLINK_LOG_LEVEL and has the following values where warn is default:

• trace

• debug

• info

• warn

• error

Should an unrecognized environment value be set the default log level warn will be used.

The log level can be passed to the container with the respective argument for each container runtime:

2.6.1 Docker

docker run --rm -e OLINK_LOG_LEVEL=info ghcr.io/olink-proteomics/npx-map-
cli:<VERSION> --help

2.6.2 Apptainer

apptainer run --env OLINK_LOG_LEVEL=info npx-map-cli.sif info

2.7 Verbs
The Olink Explore CLI is divided into several smaller functions called verbs. Each verb is responsible for performing a
specific action in the NPX Map workflow. The available verbs are the following:

• info

• fastq

• ultima

• ultima standard

• runs

• schema

• readme

7

2.7.1 Verb: info
Displays relevant information about the software.

Short option Long option Required Description

-p --panel-
data-archive

no Path to the Panel data archive file to use if not configuring it
with the environment variable.

Outputs a json formatted string with the following information:

Field Description

versions.softwareVersion The version of the CLI generating this information.

versions.normalizationAndQcSpecification The version of the specification for normalization and QC
calculations.

versions.outputFileFormat The version of the data output format and specification.

versions.researchUseLabel Research use only statement.

panelData.version The version of the panel data archive.

panelData.minimumSoftwareVersion The minimum software version that the configured panel
data archive supports.

panelData.products Information of the available panels in the configured panel
data archive.

Example 1

npx-map-cli info

2.7.2 Verb: fastq
Perform preprocessing of one or more FASTQ files.

Short option Long option Required Description

-i --input yes Input json file specifying what to process.

-o --output no Path of folder in which to save the counts folder, defaults to
current working directory if not set.

This is used for converting FASTQ files to a count folder. The FASTQ file(s) needs to contain data from one library only
which means that the tool generating the FASTQ file needs to split instrument data into libraries if more than one library
has been run.

Input is a json file containing the parameters necessary to map the FASTQ file(s) to counts. This command can also process
FASTQ file(s) over stdin. Relative path are resolved against the directory of the json input file.

8

Example json input format 1

{
 “inputType”: “FastqFiles”,
 “fastqFiles”: [
	 	 “relative/path/to/file_1.fastq.gz”,
	 	 “/absolute/path/to/file_2.fastq.gz”
],
 “productType”: “ExploreHT”,
 “instrumentId”: “ABC123”,
 “instrumentType”: “DNBSEQT7”,
 “experimentName”: “My experiment”,
	 “uniqueRunIdentifier”:	“ABCD1234”
}

Example json input format 2

{
 “inputType”: “FastqFolder”,
	 “fastqFolder”:	“/path/to/fastq/files”,
 “productType”: “ExploreHT”,
 “instrumentId”: “ABC123”,
“instrumentType”: “AVITI”,
“experimentName”: “My experiment”,
“uniqueRunIdentifier”:	“ABCD1234”
}

Please see provided json schema files (schemas/fastq.json) for details on the json input specification.

Example 1

npx-map-cli fastq -i input.json -o /path/to/my_counts_folders/

2.7.3 Verb: Ultima
Operations for processing ultima data.

9

2.7.4 Verb: Ultima standard
Perform preprocessing of an Ultima run folder.

Short option Long option Required Description

-i --input yes Input Ultima run folder to process.

-o --output no Path of folder in which to save the counts folder, defaults to the
Ultima run folder if not set.

--instrument
-id

Optional instrument id to annotate the run with, will be present
in generated run_metadata.json

--ignore
-xml

no Override xml check. The xml file is usually read to gain
information about if the run is a HT run or not. This flag
overwrites that check.

This is used for converting a Ultima run folder with a trimmer histogram file to a counts folder.

The output is stored in the same folder as the input folder unless --output is given.

Output

Counts files are named according to the pattern:

counts_{DATE}_{BARCODE_LABEL}_L1_P{INDEX_PLATE}_{ASSAY_LIBRARY}.csv

where DATE is the date that the counts file was created and the BARCODE_LABEL is the barcode label present in the
trimmer file name in the sub folder in the Ultima run folder. INDEX_PLATE can be A or B and ASSAY_LIBRARY can be
Block 1-8.

The field runIdentifier in the run_metadata.json will consist of the folder name of the provided run folder and the field
experimentName will be the BARCODE_LABEL.

Ultima folder structure and file formats

The run folder is expected to contain a {RUN_ID}_LibraryInfo.xml where RUN_ID is the id of the run. It also needs to
contain a sub folder containing the trimmer histogram csv file. If the program is run with the --override-xml flag, there is
no need to have the xml file.

The trimmer histogram file is expected to be located in a sub folder in the Ultima run folder and have the file name
{BARCODE_LABEL}-FBC_name-RBC_name-sample_index_name_hist.csv where BARCODE_LABEL should have the

format Zdddd (Z and then 4 digits).

The csv file is expected to be separated by , and contain four columns named FBC_name , RBC_name ,
sample_index_name and count . Where the FBC_name column contains the detected forward barcodes separated by

a +.

The RBC_name column contains the detected reverse barcodes separated by a +. The sample_index_name column
contains the detected sample index, and the `count` column contains the number of occurrences of the combination in
the row.

Example 1

npx-map-cli ultima standard -i /path/to/ultima_runFolder/ -o /path/to/my_counts_
folders/

10

2.7.5 Verb: runs
Perform batch processing of runs.

Short option Long option Required Description

-i --input yes Input file for describing the runs.

-o --output no Directory to create output in, defaults to current working
directory if not set.

-t --export-
type

The type of NPX file to export in parquet format.

-p --panel-
data-archive

no Path to the Panel data archive file to use if not configuring it
with the environment variable.

Create an NPX file from an input definition json file. The input file contains one or more run folders produced by the pre-
processing such as the fastq command, ultima command or from the ngs2counts program, one or more plate layouts to be
used and which data analysis reference ids that are to be used for each panel or block.

Possible values for the --export-type (-t) option are: NPX, ExtendedNPX, CLIDataExport. Default is: CLIDataExport.

Please note that NPX values and all QC results are independent between plates also when Intensity Normalization is
chosen for the project. Adding, removing or replacing a plate in a project does not affect NPX nor QC results of any of the
other plates. One and only one export file column depends on all plates together: InterCV.

This column is included in Extended NPX file and CLI Data Export File.

Example json input format 1

{
 “projectName”: “TestProject-CSAS3_EXPL”,
 “productType”: “ExploreHT”,
	 “normalization”:	“Intensity”,
 “sampleMatrix”: “Blood plasma”,
 “annotations”: {
 “key1”: “value1”,
 “key2”: “value2”
 },
 “selectedDataAnalysisRefIds”: [
 “D10001”,
 “D20001”,
 “D30001”,
	 	 “D40001”,
 “D50001”,
 “D60001”,
 “D70001”,
 “D80001”
],
 “plateLayouts”: [
 {
 “path”: “plate_layouts/plate1.csv”
 “plateId”: “plate1”
 }
],
 “runs”: [

11

 {
	 	 	 “path”:	“230405_A00915_0850_AHYMWNDSX3”,
 “runUnits”: [
 {
 “plateLayout”: “plate1”,
 “libraryNumber”: 1,
 “indexPlate”: “A”,
 “panel”: “Block_1”,
 “included”: true
 },
 {
 “plateLayout”: “plate1”,
 “libraryNumber”: 1,
 “indexPlate”: “A”,
 “panel”: “Block_2”,
 “included”: true
 }
]
 }
]
}

Please note that when index plate “C” has been used in the lab, index plate “A” and “B” shall still be set in the json file. The
field “indexPlate”: “A” shall be set for index 1 to 96 and “indexPlate”: “B” shall be set for index 97 to 192.

Please see provided json schema files (schemas/runs.json) for details on the json input specification.

If no export type is provided the program exports the default CLI Data Export file in Apache Parquet format.

For documentation of NPX file and Extended NPX file, please refer to the user guide for NPX™ Map.

Example 1

{
px-map-cli	runs	-i	input.json	-o	/path/to/my_npx_files/	--export-type	NPX
}

2.7.6 Verb: schema
Outputs the json schema for different command input types

Outputs the json schema for different command input types

Example 1

{
npx-map-cli schema fastq
}

12

2.7.7 Verb: readme
Prints out the README for NPX™ Map CLI in markdown format.

Short option Long option Required Description

-v --verb no The specific verb to display README text for, leave out to
generate the entire README.

13

3. Appendix
3.1 Project data file (Apache Parquet)
The parquet file contains multiple columns and here follows a table explaining each column.

• The Name column presents the column names in the parquet file.

• The Scope column present which level the data occurs. For example if the scope is project, then that value applies to
the whole project. If the scope value instead is datapoint then the value is unique for each datapoint.

• The Type column presents the data type of the values in the column.

• The Example column presents an example of what the data in the column could look like.

• The Description column provides a small description of the column.

Name Scope Type Example Comment

SampleID sample string subject-123 Identifier from sample_id column of
plate layout file. Combination SampleId-
OlinkId must be unique within set of
included run units in project, otherwise
invalid input. Restrictions on sample_id
in the plate layout file: At most 100
characters, no comma and no semicolon.

SampleType sample string SAMPLE_CONTROL Sample type as given in plate layout file.
Possible values are : PLATE_CONTROL,
NEGATIVE_CONTROL, SAMPLE_
CONTROL, SAMPLE and EMPTY (CLI
export only)

WellID sample string A1, B3 Well on 96-plate as given in plate layout
file.

PlateID plate string SS123456 Name of plate layout file without
extension.

DataAnalysisRefID run
unit

string D10001 Data analysis reference id entered by user,
deciding which reference values to use for
Quality control metrics.

OlinkID assay string OID20790 Olink assay identifier.

UniProt assay string Q86VW0 Uniprot ID

Assay assay string SESTD1 Assay name

AssayType assay string assay Assay type of datapoint. Possible values
are assay, amp_ctrl, inc_ctrl, ext_ctrl.

Panel run
unit

string Explore_HT,
Cardiometabolic,
Inflammation_II

For product Explore HT panel is always
Explore_HT.
For Product Explore3072 possible
values are: Oncology, Neurology,
Cardiometabolic, Inflammation,
Oncology_II, Neurology_II,
Cardiometabolic_II, Inflammation_II

14

Name Scope Type Example Comment

Block Block string 1, A Dilution block.
For product ExploreHT possible values
are 1, 2, 3, 4, 5, 6, 7 and 8. For product
Explore3073 possible values are A, B, C, D

Count data-
point

int 2641 0: NA.
Datapoint is for assay that did not pass
Olink’s batch release quality control
>
0: Same integer as in corresponding
record in count column of counts file.

ExtNPX data-
point

double -1.94701 The 2-logarithm of the ratio between
the Count value for the datapoint and
the Count value for the Extension control
assay in the same block and for the same
sample.
Value is NaN for assays that did not meet
Olink’s quality control criteria for batch
release, and for datapoints which have
failed on a sample-block and/or plate-
block level.

NPX data-
point

double 1.735509 NPX for project chosen normalization.
Bimodal assays are always plate control
normalized.
Value is NaN for assays that did not meet
Olink’s quality control criteria for batch
release, and for datapoints which have
failed on a sample-block and/or plate-
block level.

Normalization data-
point

string Plate control Plate control or Intensity or EXCLUDED
(only assays that did not meet Olink’s
quality control criteria for batch release
can have EXCLUDED and is always
EXCLUDED). Always plate control for
bimodal assays. Remaining assays
are normalized with project-selected
normalization.

15

Name Scope Type Example Comment

PCNormalizedNPX data-
point

double 1.735509 Plate control (PC) normalized NPX.
This column is independent of the
normalization type chosen for the project.
The values in this column will be identical
to the values in the NPX column if Plate
Control normalization has been chosen
for the project. The values in this column
will be different from the values in the
NPX column if Intensity normalization has
been chosen for the project.
Value is NaN for assays that did not meet
Olink’s quality control criteria for batch
release, and for datapoints which have
failed on a sample-block and/or plate-
block level.

AssayQC data-
point

string PASS This column gives a string representation
of the AssayQCWarn column. There
are three possible values, each with a
1-to-1 mapping to the integer values in
AssayQCWarn in the Extended NPX file.
NA: This datapoint is for an assay that did
not meet Olink’s quality control criteria
for batch release or for an internal control
assay or for an assay on a plate without
any passed negative controls that can be
used to perform assay QC. Value is NA if
and only if AssayQCWarn==0.
PASS: This datapoint does not have an
assay warning on a plate level. Value is
PASS if and only if AssayQCWarn==1.
WARN: This datapoint has an assay
warning on a plate level. Value is WARN if
and only if AssayQCWarn==2

16

Name Scope Type Example Comment

SampleQC data-
point

string PASS This column gives a string representation
of the overall QC status for this
sample in this block. It has a strict
mathematical mapping to the
combination of SampleBlockQCWarn,
SampleBlockQCFail and BlockQCFail in
the Extended NPX file.
There are four possible values: NA, PASS,
WARN, FAIL. In each block, each unique
SampleID will have the same value in this
column for all assays that did meet Olink’s
quality control criteria for batch release.
Assays that did not meet these criteria
will have value NA. In other words, each
SampleID can have at most one non-NA
SampleQC value in each block.
NA: This datapoint represents an
assay that did not meet Olink’s quality
control criteria for batch release and
does not have a QC status. Value is NA
if and only if SampleBlockQCWarn==0
and SampleBlockQCFail==0 and
BlockQCFail==0.
PASS: The sample has passed all QC
checks in the sample dimension in this
QC unit. Value is PASS if and only if
SampleBlockQCFail == 1 and BlockQCFail
== 1 and SampleBlockQCWarn < 2.
WARN: The sample has a warning
on the sample - block level. Value is
WARN if and only if SampleBlockQCFail
== 1 and BlockQCFail == 1 and
SampleBlockQCWarn >= 2
FAIL: The sample has failed, either on
the sample - block level or for the entire
block and plate. Value is FAIL if and only if
SampleBlockQCFail > 1 or BlockQCFail >
1, where the “or” is inclusive.
Note: SampleBlockQCWarn is not
needed to determine if the value is FAIL.
SampleBlockQCWarn can be 0, 1 or > 1
for datapoints that have failed.

SoftwareVersion run
unit

string 1.0.0 The semantic version X.Y.Z of the software
that was used to produce the data.

SoftwareName run
unit

string NPX Map Software name. Possible values are NPX
Map or NPX Map CLI.

PanelDataArchiveVersion run
unit

string 1.0.0 The version X.Y.Z of the Panel Data
Archive that was used for the QC.

17

Name Scope Type Example Comment

PreProcessingVersion run
unit

string 1.0.0 The version of the preprocessing software
as indicated in run_metadata.json for the
run unit.

PreProcessingSoftware run
unit

string NPX Map name of pre-processing software.
Possible values: NPX Map CLI, NPX Map,
ngs2counts

InstrumentType run
unit

string Illumina NextSeq
2000

NGS instrument type read from pre-
processing run_metadata.json
Possible values:
Element Biosciences AVITI
MGI Tech DNBSEQ T7
Illumina NextSeq 550
Illumina NextSeq 1000
Illumina NextSeq 2000
Illumina NovaSeq 6000
Illumina NovaSeq X
Illumina NovaSeq X Plus
Ultima Genomics UG100

IntraCV assay-
plate

double 0.101 Intra CV For chosen normalization, except
always plate control for bimodal assays.
Value is NaN for assays that did not meet
Olink’s quality control criteria for batch
release, for assays not included in CV
calculations, and for datapoints which
have failed on a sample-block and/or
plate-block level.

InterCV assay-
project

double 0.201 Inter CV For chosen normalization, except
always plate control for bimodal assays.
Value is NaN for assays that did not meet
Olink’s quality control criteria for batch
release, for assays not included in CV
calculations, and for datapoints which
have failed on a sample-block and/or
plate-block level.

SampleBlockQCWarn data-
point

int 0 0: NA. This datapoint is not for type
SAMPLE, or this datapoint is for an assay
that did not meet Olink’s quality control
criteria for batch release.
1: PASS. This datapoint is for type
SAMPLE and there is no warning on the
sample-block level.
>1: WARN. This datapoint is for type
SAMPLE and there is a warning on
the sample-block level. For details on
the interpretation of values greater
than 1, see Documentation of integer
representation.

18

Name Scope Type Example Comment

SampleBlockQCFail data-
point

int 1 0: NA. This datapoint is for an assay
that did not meet Olink’s quality control
criteria for batch release.
1: PASS. This datapoint is not failed on a
sample-block level.
>1: FAIL. This datapoint is failed on
a sample-block level. For details on
the interpretation of values greater
than 1, see Documentation of integer
representation.

BlockQCFail data-
point

int 1 0: NA. This datapoint is for an assay
that did not meet Olink’s quality control
criteria for batch release.
1: PASS. This datapoint is not failed on a
plate-block level.
>1: FAIL. This datapoint is failed on
a plate-block level. For details on
the interpretation of values greater
than 1, see Documentation of integer
representation.

AssayQCWarn data-
point

int 1 0: NA. This datapoint is for an assay
that did not meet Olink’s quality control
criteria for batch release or internal
control assay or for an assay on a plate
without any passed negative controls that
can be used to perform assay QC.
1: PASS. This datapoint does not have an
assay warning on a plate level.
2: WARN. This datapoint has an assay
warning on a plate level.
For more details see [Documentation of
integer representation]

RunID run
unit

string 8ca76722-d1fd-4a4a-
a296-d77415675651

A uuid. Unique run identifier created by
preprocessing software and written to
run_metadata.json

RunUnitId run
unit

string 8ca76722-d1fd-4a4a-
a296-d77415675651

A uuid. Unique run unit (count file)
identifier created by preprocessing
software and written to run_metadata.
json

19

Name Scope Type Example Comment

ExperimentName run
unit

string LJ111-1111_
SS123456_NEU_INF

Written to run_metadata.json by
preprocessing software.
For runs preprocessed with ngs2counts
the string is copied from Illumina output
RunParameters.xml.
For runs preprocessed with NPX Map and
verb ultima the string is the name of the
input run folder.
For runs preprocessed with NPX Map and
verb fastq the string is an optional input
with default NA.

RunIdentifier run
unit

string HHCYVDRXY Written to run_metadata.json by
preprocessing software.
For runs preprocessed with ngs2counts
the string is copied from Illumina output
RunInfo.xml, field “Flowcell”.
For runs preprocessed with NPX Map and
verb ultima the string is an optional input.
For runs preprocessed with NPX Map and
verb fastq the string is a required input.

InstrumentID run
unit

string A01234 Written to run_metadata.json by
preprocessing software. For runs
preprocessed with ngs2counts the string
is copied from Illumina output RunInfo.
xml. For runs preprocessed with NPX Map
the string is an input with default NA.

LibraryNumber run
unit

int 1 Read from run_metadata. “Library” is
short for “pooled sequencing library”. For
runs preprocessed with ngs2counts: The
default for a NovaSeq6000 S4 flowcell
with Xp workflow is to treat each lane
as a separate library, giving a one-to-
one mapping between lane and library,
but the default can be overridden via
option --library-mapping. A NovaSeq S4
flowcell with standard workflow can only
sequence a single library, since the lanes
are not separated.
For runs preprocessed with NPX Map:
LibraryNumber will always be 1, since
only one pooled sequencing library can
be preprocessed at a time.

IndexPlate run
unit

string A Sample index plate, i.e. range of sample
indices, for run unit.
 Can be ‘A’ or ‘B’ in Explore HT and ‘1’, ‘2’,
‘3’, ‘4’ for Explore 3072

20

Name Scope Type Example Comment

SampleIndexVersion run
unit

int 2 Sample index version used in counts file.
Version is 2 or 5 for all Explore HT index
plates and 1 for Explore3072 index plates

MatchedCounts library long 354689590 The total number of matched counts for
the run unit (count file).

Reads library long 638337024 Will be 0 for Ultima run data
preprocessed with NPX Map verb ultima.
For any other type of run data this is the
total number of reads in the library with
number LibraryNumber in run RunID.

Included run
unit

bool TRUE Indicates whether run unit (count file) is
included in or excluded from the project.

PreProcessingRunTimestamp run
unit

DateTime 2001-01-01 02:00:00 Input read from pre-processing run_
metadata.json, ISO DateTime

AssayCategory assay int 0 0 represents an internal control or regular
biomarker assay that passed batch
release quality criteria.
1 represents an assay that failed batch
release quality control criteria for the
batch corresponding to the selected Data
Analysis Reference Id.

AssaySystematicEffect data-
point

int 0 0: NA. This datapoint has not been
subject to checks for systematic effects.
1: PASS. This datapoint has no flag for
any assay-level systematic effects on this
plate.
>1: FLAG. This datapoint has a flag for
one or more assay-level systematic
effects on this plate. For more details
see Documentation of systematic effect
integer representation.

BlockSystematicEffect data-
point

int 0 The BlockSystematicEffect flags when
a sufficiently high fraction of individual
assays flag for the same type of
systematic effect.
0: NA. This datapoint has not been
subject to checks for systematic effects.
1: PASS. This datapoint has no flag for
any block-level systematic effects on this
plate.
>1: FLAG. This datapoint has a flag
for one or more block-level systematic
effects on this plate. For more details
see Documentation of systematic effect
integer representation.

21

3.2 Documentation of detailed integer representation of QC status
Extended NPX file columns SampleBlockQCWarn, SampleBlockQCFail, BlockQCFail and AssayQCWarn together give the
QC status of each datapoint on a sample, block and assay level. The values are encoded using the same principle as the
FLAG value in Sequence Alignment/Map format (SAM) files used to represent aligned RNA and DNA sequences.

In each of the four columns, the value is the sum of the numeric representations of all the individual QC check results
for that column and datapoint. The numeric representation unambiguously encodes the complete QC status for the
datapoint. The detailed interpretation of each value can be obtained either programmatically, by bit-masking using the
binary representation of each QC check, or manually, using the integer representations.

SampleBlockQCWarn QC check results Integer representation Binary representation

NA: The checks do not apply for this datapoint. 0 00000

PASS: All the checks pass for this datapoint. 1 00001

Warning due to low incubation control assay count 2 00010

Warning due to low amplification control assay count 4 00100

Warning due to low extension control assay count 8 01000

Warning due to low incubation control ratio in
SAMPLE

16 10000

Important note: A datapoint for type SAMPLE which fails due to low incubation control count will not have a warning due
to low incubation control count.

The same rule applies for amplification control assay and extension control assay. The failure will be indicated in the
SampleBlockQCFail column.

SampleBlockQCWarn Example 1: A regular sample has a warning due to both low extension control assay count and to low
amplification control count.

The numeric representation is the sum of the individual representations for those two warnings: 8+4=12, so the value in
the SampleBlockQCWarn column is 12.

SampleBlockQCWarn Example 2: A Plate Control is not subject to the checks that can lead to a sample warning. The
numeric representation for “The checks do not apply for this datapoint” is 0, so the value in the SampleBlockQCWarn
column is 0.

BlockQCFail QC check results Integer representation Binary representation

NA: The checks do not apply for this datapoint 0 000

PASS: All the checks pass for this datapoint. 1 001

Fail due to too few passed Negative Controls 2 010

Fail due to too few passed Plate Controls 4 100

AssayQCWarn QC check results Integer representation Binary representation

NA: The checks do not apply for this datapoint. 0 00

PASS: All the checks pass for this datapoint. 1 01

Warning due to unexpected signal in Negative Controls 2 10

22

3.3 Documentation of detailed integer representation of systematic effects
Columns AssaySystematicEffect and BlockSystematicEffect together give the complete systematic effect information
presented in the user interface of NPX Map.

The flags are intended as a starting point for further investigation and must not be interpreted as reports of confirmed
systematic effects.

The systematic effects flags are first checked on a plate-assay level. An effect can flag on a plate-assay level without there
being a plate-block level flag.

Multiple patterns can flag for the same assay, however some combinations are not possible, as explained below.

1. All full plate patterns are checked before individual column or row effects, and if any full plate pattern flags then the
row and column effect checks are not performed.

2. The full plate Column Gradient effect is checked before the full plate Four Column Pattern 1-3, and if the Column
Gradient effect flags then the Four Column Pattern effect checks are not performed.

When an individual row or column effect is detected, the output does not include information about which row or column
is affected. The four different full plate Diagonal Gradient effects differ by shifts of the diagonal.

The integer value of AssaySystematicEffect is the sum of the numeric representations of all the individual check results for
the assay and plate.

AssaySystematicEffect systematic effect check results

Integer representation Binary representation

NA: The checks do not apply for this datapoint. Checks
do not apply for internal control assays, nor for assays
that did not pass batch release QC criteria, nor for
assays where NPX data in unavailable

0 0000000000000

PASS: The checks apply for this assay and datapoint,
and no effect is flagging for this assay and plate

2^0 0000000000001

Full plate Column Gradient 2^1 0000000000010

Full plate Row Gradient 2^2 0000000000100

Full plate Diagonal Gradient 1 2^3 0000000001000

Full plate Diagonal Gradient 2 2^4 0000000010000

Full plate Diagonal Gradient 3 2^5 0000000100000

Full plate Diagonal Gradient 4 2^6 0000001000000

Full plate Alternating Column Pattern 2^7 0000010000000

Full plate Four Column Pattern 1 flags but not the
Column Gradient

2^8 0000100000000

Full plate Four Column Pattern 2 flags but not the
Column Gradient

2^9 0001000000000

Full plate Four Column Pattern 3 flags but not the
Column Gradient

2^10 0010000000000

Individual Column Effect flags but none of the full plate
effects flag

2^11 0100000000000

Individual Row Effect flags bug none of the full plate
effects flag

2^12 1000000000000

23

The block-level systematic effect is a summary of the assay-level flags. The block-level effects flag when a sufficiently
high fraction of individual assays in that block flag for the same type of systematic effect. The integer value of
BlockSystematicEffect is the sum of the numeric representations of all the individual check results for the block and plate.

BlockSystematicEffect systematic effect check results

Integer representation Binary representation

0: NA. This datapoint is not subject to checks for
systematic effects

0 0000000000000

1: PASS. For this plate, no assay-level effect flags for a
significant fraction of assays in this block

2^0 0000000000001

Full plate Column Gradient flags for a significant
fraction of assays

2^1 0000000000010

Full plate Row Gradient flags for a significant fraction of
assays

2^2 0000000000100

Full plate Diagonal Gradient 1 flags for a significant
fraction of assays

2^3 0000000001000

Full plate Diagonal Gradient 2 flags for a significant
fraction of assays

2^4 0000000010000

Full plate Diagonal Gradient 3 flags for a significant
fraction of assays

2^5 0000000100000

Full plate Diagonal Gradient 4 flags for a significant
fraction of assays

2^6 0000001000000

Full plate Alternating Column Pattern flags for a
significant fraction of assays

2^7 0000010000000

Full plate Four Column Pattern 1 flags for a significant
fraction of assays

2^8 0000100000000

Full plate Four Column Pattern 2 flags for a significant
fraction of assays

2^9 0001000000000

Full plate Four Column Pattern 3 flags for a significant
fraction of assays

2^10 0010000000000

Individual Column Effect flags for a significant fraction
of assays

2^11 0100000000000

Individual Row Effect flags for a significant fraction of
assays

2^12 1000000000000

1591, 1.0.2, 2025-02-10

4. Revision history
Version Date Description

1.0.2 2025-02-10 Software update does not affect the manual.

1.0.1 2025-01-27 New

www.olink.com
© 2025 Olink Proteomics AB, part of Thermo Fisher Scientific.
Olink products and services are For Research Use Only. Not for use in diagnostic procedures.
All information in this document is subject to change without notice. This document is not intended to convey any warranties, representations and/or
recommendations of any kind, unless such warranties, representations and/or recommendations are explicitly stated.
Olink assumes no liability arising from a prospective reader’s actions based on this document.
OLINK, NPX, PEA, PROXIMITY EXTENSION, INSIGHT and the Olink logotype are trademarks registered, or pending registration, by Olink Proteomics AB.
All third-party trademarks are the property of their respective owners.
Olink products and assay methods are covered by several patents and patent applications https://www.olink.com/patents/

