

## Validation data

# Target 48 Cytokine

## Introduction

Olink® Target 48 Cytokine is a reagent kit measuring 45 well-established, inflammation-related human protein biomarkers simultaneously. The analytical performance of the product has been carefully validated and the results are presented below.

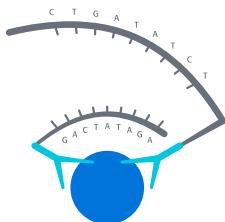
## Technology

The Olink reagents are based on the Proximity Extension Assay (PEA) technology<sup>1-2</sup>, where 45 oligonucleotide labeled antibody probe pairs are each allowed to bind to their respective target protein present in the sample. Following hybridization of the matched oligo sequences, a PCR reporter sequence is formed by a proximity-dependent DNA polymerization event. This is then amplified, and subsequently detected and quantified using real-time PCR. The assay is performed in a 48-plex format without any need for washing steps (see Figure 1), and results can be reported in both standard concentration units (pg/mL, default) and in relative concentration units (NPX, optional).

## Quality controls

Internal and external controls have been developed by Olink for data normalization and quality control. These have been designed to enable monitoring of the technical assay performance, as well as the quality of individual samples, providing information at each step of the Olink protocol (see Figure 1). The internal controls are added to each sample and include one Immuno control, one Extension control and one Detection control. The Immunoassay control (a non-human antigen) monitors all three steps starting with the immuno reaction. The Extension Control (an antibody

linked to two matched oligonucleotides for immediate proximity that is independent of antigen binding) monitors the extension and read out steps and is used for data normalization across samples. Finally, the Detection control (a synthetic double-stranded template) monitors the readout step. Samples that deviate from a pre-determined range for one or more of the internal control values will result in a QC warning in the NPX software.


Each sample plate contains eight control samples. Triplicates of the Sample Control, duplicates of the Negative Control and triplicates of the Calibrator. The Calibrator is used in a second normalization step and is designed to improve inter assay precision, enabling optimal comparison of data derived from multiple runs. The Sample Control is used to monitor and control the quality of reported output data by evaluating both accuracy and intra assay precision for all assays. Both the Sample control and the Calibrator are composed of a pooled plasma from healthy donors spiked with recombinant proteins known to have low endogenous levels in normal plasma.

## Data analysis and protein concentration calculation

Data analysis was performed by employing a pre-processing normalization procedure. For each sample and data point, the corresponding Cq-value for the Extension control was subtracted, thus normalizing for technical variation within one run. Normalization between runs were then performed for each assay by subtracting the corresponding dCq-value for the median of the three Calibrator replicates from the dCq-values generated. The next step in the pre-processing procedure was to set the values relative to a bridging factor that bridges the data between different kit batches. The Normalized Protein eXpression (NPX)

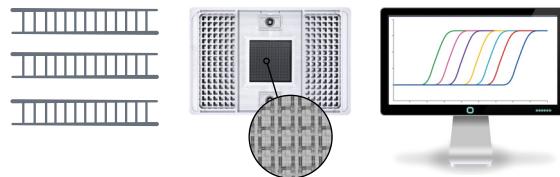
### Immuno reaction

Allow the 45 antibody probe pairs to bind to their respective proteins in your samples.



Immuno/incubation control

### Extension and pre-amplification


Extend and pre-amplify 45 unique DNA reporter sequences by proximity extension.



Extension control

### Amplification and detection

Quantify each biomarker's DNA reporter using high throughput real-time qPCR.



Detection control

**Figure 1.** Olink assay procedure (above) and controls (below). The internal controls enable monitoring of the three core steps in the Olink assay and are used for quality control and data normalization. Readout is performed by using the Fluidigm® Biomark™ or the Fluidigm Biomark HD system.

unit generated is on a log2 scale, where a larger number represents a higher protein level in the sample, typically with the background level at or close to zero. The protein concentration in standard concentration units (pg/mL) is obtained by fitting the NPX-value to a standard curve, describing the immunoassay shape, using four parameters in a non-linear logistic regression model. The standard curves are defined during the validation procedure and found via the panel product page ([www.olink.com/t48cyt](http://www.olink.com/t48cyt)). Three examples are shown in Figure 2.

## Performance characteristics

### Sample information

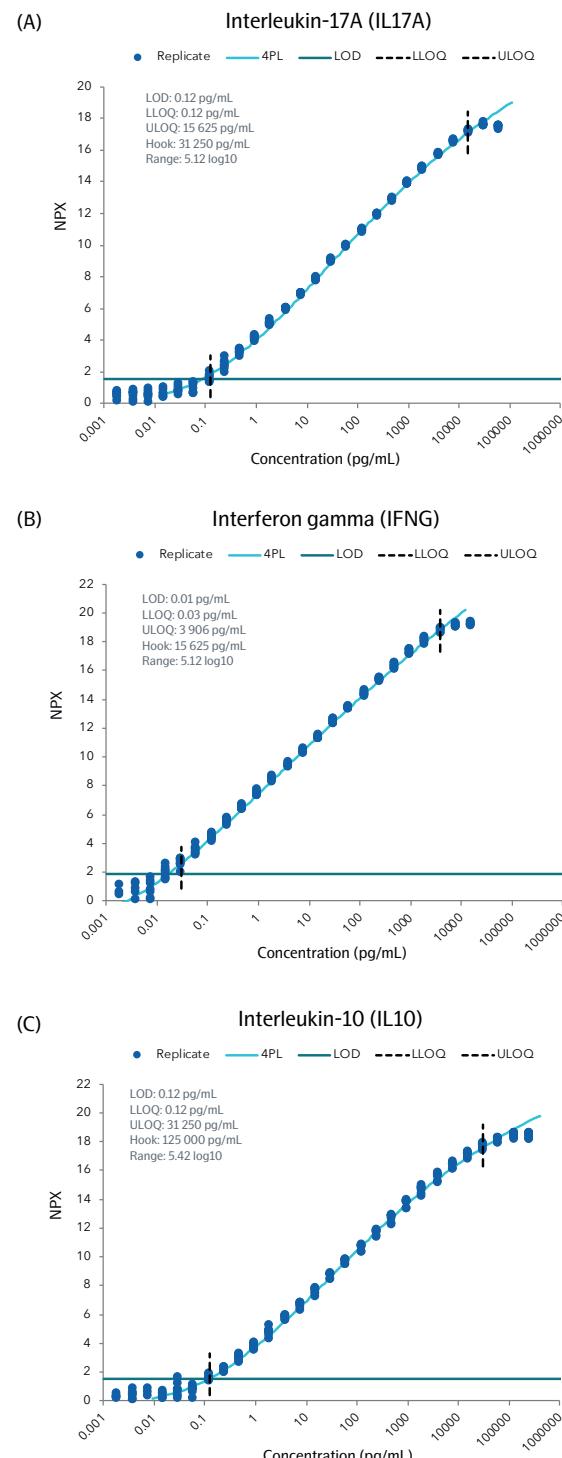
Olink Target 48 Cytokine was validated using serum and plasma samples from 15 healthy, adult donors (15 serum samples and 15 plasma samples) and 60 plasma samples from adult patients with diagnosed inflammation-related diseases. The disease samples included 4-10 patients with each of the following diagnoses: Alzheimer's Disease, Atopic Dermatitis, Asthma, Coronary Artery Disease (CAD), Crohn's Disease, Ulcerative Colitis, Multiple Sclerosis (MS), Psoriasis, Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE) or Type 2 Diabetes.

### Sample types

The ability to use different sample types was evaluated by collecting matched serum, EDTA, acid citrate dextrose (ACD), and sodium heparin plasma samples from 4 healthy individuals. Table 1 summarizes the response values for 15 normal EDTA plasma samples expressed in NPX, as well as relative differences between the additional samples types compared to EDTA plasma. Variations observed between responses in heparin, citrate plasma and serum, as compared to EDTA plasma, were generally small and all assays should therefore function without limitation in these sample types.

### Analytical measurement

#### Detection limit


Standard curves were determined for the 45 biomarkers simultaneously in a multiplex format using recombinant proteins. Limit of detection (LOD) was defined as 3 standard deviations above background and reported in pg/mL (see Table 1 and Figure 2).

#### High dose hook effect

The high dose hook effect is a state of antigen excess relative to the reagent antibodies, resulting in falsely low values. In such cases, a significantly lower value can be reported, which leads to erroneous interpretation of results. Therefore, the hook effect was determined for each biomarker reported in pg/mL, see Table 1.

#### Measuring range

The analytical measuring range was defined by the lower limit of quantification (LLOQ) and upper limit of quantification (ULOQ) and reported in order of log10, see Table 1. To ensure accurate quantification from lot to lot Olink establish release specifications for the limits of quantification (LOQ) for every manufactured lot. The analytical measuring data shown in Table 1 is based on the




**Figure 2** Calibrator curves from 3 assays and their corresponding analytical measurement data.

validation results during product development. The upper and lower limits of quantification (ULOQ and LLOQ, respectively) were calculated and reported in pg/mL with the following trueness and precision criteria relative error <30% and CV <30%, of back-calculated values (see Table 1). Separate calibrator curves were defined for each assay and can be accessed via the panel product page ([www.olink.com/t48cyt](http://www.olink.com/t48cyt)) together with the analytical data for the assay. Three examples of assays and their analytical data are shown in Figure 2. The distribution of measuring ranges of the 45 assays and endogenous plasma levels for healthy donors are shown in Figure 3.

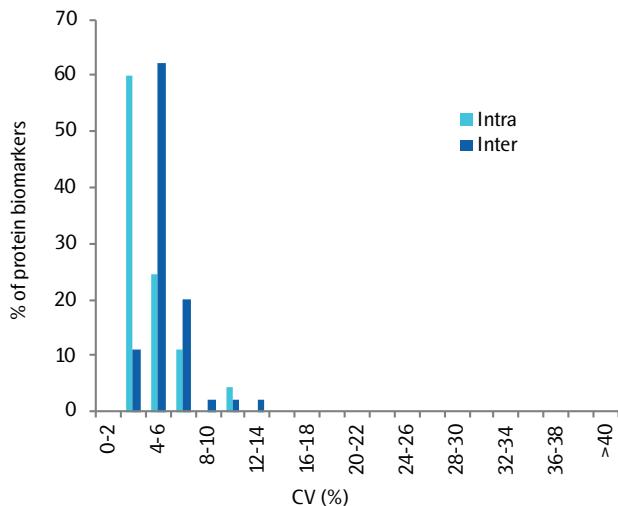
**Table 1.** Sample types; Normalized Protein eXpression (NPX), Endogenous interference, Analytical measuring range; Limit of Detection (LOD), Lower Limit of Quantification (LLOQ), Upper Limit of Quantification (ULOQ), High Dose Effect (Hook), Range and Precision indicative of assay performance are shown for the 45 protein biomarkers. Not available, NA

| Target                                                       | UniProt No | Sample types |        |            | Endogenous interference | Analytical measuring range |         |       |         | Precision |       |       |        |      |             |      |
|--------------------------------------------------------------|------------|--------------|--------|------------|-------------------------|----------------------------|---------|-------|---------|-----------|-------|-------|--------|------|-------------|------|
|                                                              |            | 10th %tile   | Median | 90th %tile |                         | ACD                        | Heparin | Serum | (mg/mL) | (pg/mL)   | LOD   | LLOQ  | ULOQ   | Hook | log10 Range | % CV |
| C-C motif chemokine 3 (CCL3)                                 | P10147     | 2.6          | 4.4    | 7          |                         | 78                         | 116     | 153   | 15      | 0.030     | 0.03  | 1953  | 3906   | 4.8  | 4           | 4    |
| C-C motif chemokine 4 (CCL4)                                 | P13236     | 32           | 57     | 114        |                         | 65                         | 109     | 154   | 15      | 0.119     | 0.12  | 3906  | 3906   | 4.5  | 4           | 5    |
| C-C motif chemokine 19 (CCL19)                               | Q99731     | 60           | 88     | 192        |                         | 95                         | 90      | 73    | 15      | 0.060     | 0.12  | 1953  | 3906   | 4.2  | 4           | 5    |
| C-X-C motif chemokine 9 (CXCL9)                              | Q07325     | 27           | 52     | 145        |                         | 87                         | 108     | 96    | 15      | 0.119     | 0.12  | 3906  | 7812   | 4.5  | 3           | 4    |
| C-X-C motif chemokine 10 (CXCL10)                            | P02778     | 37           | 65     | 271        |                         | 84                         | 92      | 104   | 15      | 0.119     | 0.12  | 1953  | 7812   | 4.2  | 4           | 4    |
| C-X-C motif chemokine 11 (CXCL11)                            | O14625     | 10           | 39     | 183        |                         | 44                         | 210     | 275   | 19      | 0.119     | 0.12  | 1953  | 7812   | 4.2  | 3           | 4    |
| Eotaxin (CCL11)                                              | P51671     | 53           | 102    | 182        |                         | 99                         | 146     | 109   | 15      | 0.119     | 0.24  | 15625 | 62500  | 4.8  | 4           | 4    |
| Fms-related tyrosine kinase 3 ligand (FLT3LG)                | P49771     | 54           | 87     | 135        |                         | 98                         | 109     | 118   | 15      | 0.238     | 0.95  | 3906  | 7812   | 3.6  | 4           | 5    |
| Granulocyte colony-stimulating factor (CSF3)                 | P09919     | 72           | 107    | 140        |                         | 105                        | 111     | 129   | 15      | 1.907     | 7.63  | 62500 | 250000 | 3.9  | 4           | 4    |
| Granulocyte-macrophage colony-stimulating factor (CSF2)      | P04141     | 0.06         | 0.14   | 0.20       |                         | NA                         | NA      | NA    | 15      | 0.060     | 0.24  | 7812  | 15625  | 4.5  | 4           | 6    |
| Hepatocyte growth factor (HGF)                               | P14210     | 160          | 212    | 428        |                         | 74                         | 59      | 193   | 15      | 0.238     | 0.24  | 15625 | 31250  | 4.8  | 3           | 4    |
| Interferon gamma (IFNG)                                      | P01579     | 0.06         | 0.15   | 0.31       |                         | 92                         | 120     | 117   | 15      | 0.015     | 0.03  | 3906  | 15625  | 5.1  | 10          | 11   |
| Interleukin-1 beta (IL1B)                                    | P01584     | 0.004        | 0.024  | 0.20       |                         | NA                         | NA      | NA    | 3.8     | 0.095     | 0.19  | 3125  | 25000  | 4.8  | 5           | 5    |
| Interleukin-2 (IL2)                                          | P60568     | 0.006        | 0.014  | 0.033      |                         | NA                         | NA      | NA    | 15      | 0.015     | 0.12  | 3906  | 15625  | 4.5  | 5           | 7    |
| Interleukin-4 (IL4)                                          | P05112     | 0.002        | 0.009  | 0.034      |                         | NA                         | NA      | NA    | 15      | 0.015     | 0.06  | 3906  | 15625  | 4.8  | 5           | 6    |
| Interleukin-6 (IL6)                                          | P05231     | 1.3          | 2.5    | 5          |                         | 104                        | 111     | 132   | 15      | 0.030     | 0.06  | 3906  | 15625  | 4.8  | 5           | 7    |
| Interleukin-7 (IL7)                                          | P13232     | 0.4          | 1.2    | 3          |                         | 39                         | 110     | 385   | 15      | 0.119     | 0.24  | 1953  | 7812   | 3.9  | 3           | 4    |
| Interleukin-8 (CXCL8)                                        | P10145     | 2            | 4      | 12         |                         | 76                         | 153     | 211   | 7.5     | 0.119     | 0.24  | 1953  | 7812   | 3.9  | 4           | 5    |
| Interleukin-10 (IL10)                                        | P22301     | 2            | 4      | 9          |                         | 152                        | 116     | 108   | 15      | 0.119     | 0.12  | 31250 | 125000 | 5.4  | 3           | 8    |
| Interleukin-13 (IL13)                                        | P35225     | 0.10         | 0.27   | 4.1        |                         | NA                         | NA      | NA    | 15      | 0.238     | 0.48  | 15625 | 500000 | 4.5  | 4           | 5    |
| Interleukin-15 (IL15)                                        | P40933     | 7.4          | 10.2   | 14.1       |                         | 101                        | 113     | 120   | 3.8     | 0.119     | 0.12  | 15625 | 125000 | 5.1  | 6           | 7    |
| Interleukin-17A (IL17A)                                      | Q16552     | 0.2          | 0.4    | 1.4        |                         | 94                         | 117     | 133   | 15      | 0.119     | 0.12  | 15625 | 31250  | 5.1  | 7           | 7    |
| Interleukin-17C (IL17C)                                      | Q9P0M4     | 4.3          | 7.5    | 22.0       |                         | 118                        | 98      | 98    | 15      | 0.238     | 1.91  | 15625 | 62500  | 3.9  | 4           | 5    |
| Interleukin-17F (IL17F)                                      | Q96PD4     | 0.09         | 0.33   | 2.6        |                         | 102                        | 119     | 130   | 15      | 0.238     | 0.24  | 3906  | 15625  | 4.2  | 5           | 7    |
| Interleukin-18 (IL18)                                        | Q14116     | 117          | 235    | 358        |                         | 94                         | 101     | 111   | 3.8     | 0.477     | 0.95  | 15625 | 31250  | 4.2  | 3           | 4    |
| Interleukin-27 (IL27)                                        | Q14213     | 1            | 5      | 13         |                         | 146                        | 144     | 108   | 15      | 0.060     | 0.24  | 31250 | 125000 | 5.1  | 6           | 7    |
| Interleukin-33 (IL33)                                        | Q95760     | 0.03         | 0.08   | 0.16       |                         | NA                         | NA      | NA    | 15      | 0.119     | 0.24  | 7812  | 31250  | 4.5  | 7           | 7    |
| Oxidized low-density lipoprotein receptor 1 (OLR1)           | P78380     | 22           | 41     | 84         |                         | 111                        | 317     | 777   | 1.9     | 0.238     | 0.95  | 3906  | 7812   | 3.6  | 3           | 4    |
| Macrophage colony-stimulating factor 1 (CSF1)                | P09603     | 103          | 116    | 140        |                         | 98                         | 108     | 114   | 15      | 0.060     | 0.12  | 3906  | 15625  | 4.5  | 3           | 3    |
| Macrophage metalloelastase (MMP12)                           | P39900     | 57           | 122    | 271        |                         | 115                        | 92      | 132   | 15      | 1.907     | 7.63  | 15625 | 62500  | 3.3  | 4           | 6    |
| Interstitial collagenase (MMP1)                              | P03956     | 31           | 161    | 511        |                         | 212                        | 986     | 1359  | 15      | 0.238     | 0.95  | 7812  | 31250  | 3.9  | 4           | 5    |
| C-C motif chemokine 2 (CCL2)                                 | P13500     | 129          | 196    | 339        |                         | 111                        | 120     | 123   | 15      | 0.119     | 0.24  | 3906  | 7812   | 4.2  | 4           | 5    |
| C-C motif chemokine 7 (CCL7)                                 | P80098     | 0.22         | 0.51   | 10         |                         | 86                         | 148     | 139   | 1.9     | 0.030     | 0.12  | 1953  | 7812   | 4.2  | 3           | 4    |
| C-C motif chemokine 8 (CCL8)                                 | P80075     | 79           | 24.3   | 60.3       |                         | 71                         | 107     | 194   | 15      | 0.030     | 0.03  | 1953  | 7812   | 4.8  | 4           | 6    |
| C-C motif chemokine 13 (CCL13)                               | Q99616     | 25           | 70     | 181        |                         | 57                         | 142     | 237   | 15      | 0.030     | 0.06  | 1953  | 3906   | 4.5  | 4           | 5    |
| Oncostatin-M (OSM)                                           | P13725     | 0.5          | 1.4    | 4.6        |                         | 45                         | 110     | 293   | 15      | 0.030     | 0.12  | 1953  | 7812   | 4.2  | 6           | 8    |
| Pro-epidermal growth factor (EGF)                            | P01133     | 4            | 17     | 53         |                         | 42                         | 171     | 1011  | 15      | 0.238     | 0.48  | 977   | 7812   | 3.3  | 4           | 5    |
| Stromal cell-derived factor 1 (CXCL12)                       | P48061     | 68           | 190    | 246        |                         | 77                         | 68      | 80    | 15      | 30.518    | 30.52 | 31250 | 125000 | 3.0  | 6           | 7    |
| Thymic stromal lymphopoietin (TSLP)                          | Q969D9     | 0.03         | 0.06   | 0.38       |                         | NA                         | NA      | NA    | 15      | 0.119     | 0.48  | 7812  | 125000 | 4.2  | 3           | 4    |
| Tumor necrosis factor ligand superfamily member 12 (TNFSF12) | O43508     | 129          | 374    | 574        |                         | 93                         | 106     | 135   | 15      | 0.954     | 3.81  | 15625 | 62500  | 3.6  | 4           | 5    |
| Lymphotxin-alpha (LTA)                                       | P01374     | 6            | 10     | 12         |                         | 96                         | 99      | 141   | 15      | 0.119     | 0.12  | 3906  | 7812   | 4.5  | 4           | 6    |
| Tumor necrosis factor ligand superfamily member 10 (TNFSF10) | P50591     | 264          | 314    | 544        |                         | 100                        | 113     | 98    | 15      | 0.477     | 0.95  | 7812  | 31250  | 3.9  | 4           | 4    |
| Protransforming growth factor alpha (TGFA)                   | P01135     | 3            | 5      | 6          |                         | 108                        | 116     | 448   | 15      | 0.238     | 0.48  | 1953  | 7812   | 3.6  | 5           | 5    |
| Tumor necrosis factor (TNF)                                  | P01375     | 5            | 11     | 17         |                         | 87                         | 84      | 53    | 15      | 1.907     | 3.81  | 15625 | 62500  | 3.6  | 11          | 13   |
| Vascular endothelial growth factor A (VEGFA)                 | P15692     | 129          | 202    | 329        |                         | 70                         | 97      | 166   | 15      | 0.238     | 0.48  | 7812  | 31250  | 4.2  | 4           | 5    |

## Dynamic range and plasma levels



**Figure 3** Distribution of analytical measuring range, defined by the lower and upper limits of quantification (LLOQ-ULOQ), and normal plasma levels (darker bars) for the 45 protein biomarkers.


## Precision

### Repeatability

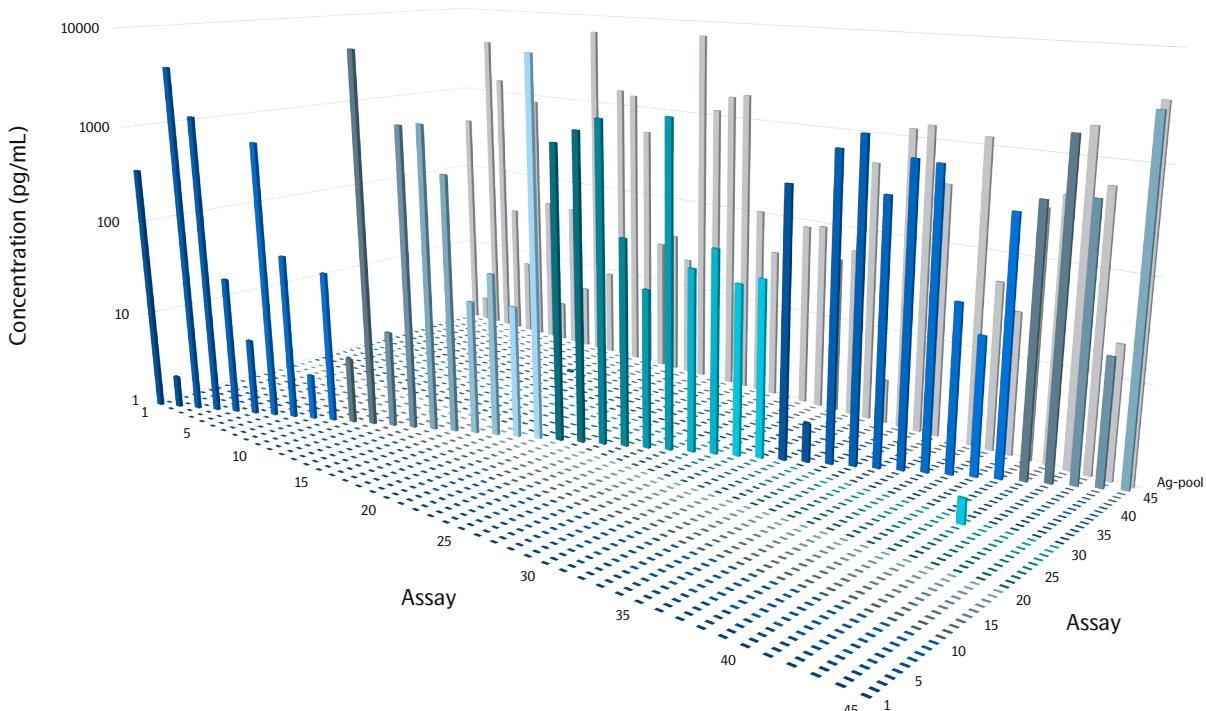
Inter (between run) and intra (within run) CV were assessed by evaluating triplicate measurements of the Sample Control on each plate, based on 12 plate runs performed by four different operators.

Inter assay variation (between runs) was calculated between experiments with the same operator. The inter assay %CV reported here is the average of the four operators' %CV. CV calculations were performed on data in pg/mL for the 45 analytes for which response levels within LOQ were detected, see Table 1.

Across the 45 assays, the mean intra assay and inter assay variations observed was 4% and 6%, respectively. The distribution of both intra assay and inter assay variations are shown in Figure 4.



**Figure 4.** Distribution of intra-assay and inter-assay variations of Olink Target 48 Cytokine.

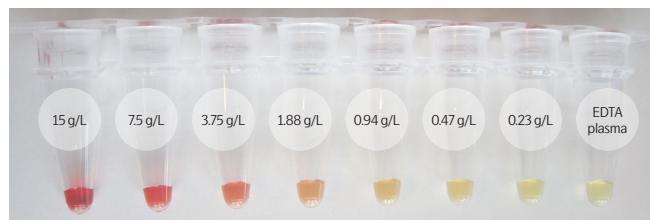

### Reproducibility

Inter-site (between sites) and lot-to-lot (between batches) variation were investigated during the validation in a beta-site study. 15 individual samples were distributed to two laboratories together with two batches of Olink Target 48 Cytokine reagent kits. Each site performed the analysis of the 15 individual samples according to instructions for two independent runs, one with each kit batch and run by two operators. The intra assay mean CV value results for beta-site 1 and 2 were 7% and 7%, and the mean inter assay CVs were 10% and 8%, respectively. Overall, Olink Target 48 Cytokine showed good reproducibility and repeatability. In addition to Olink Analysis Service laboratory in Uppsala, Sweden and in Boston, US, there are many Olink-certified core laboratories around the world running Olink panels (see [www.olink.com/service](http://www.olink.com/service) for details). Our experience over several years is that inter-site reproducibility is very good provided that operators are properly trained. For more information please contact [support@olink.com](mailto:support@olink.com).

## Analytical Specificity

### Assay specificity

To test that the antibodies and assays in Olink Target 48 Cytokine are specific for their desired targets, we measured each assay response to all of the 45 proteins (recombinantly produced) in the panel. Only if there is a correct match will a reporter sequence be created and serve as a template for subsequent real-time qPCR. Each assay should only recognize its own target and no other protein in the panel, which is demonstrated as elevated levels along the entire diagonal in Figure 5. The last row contains a positive control sample where all proteins should be elevated as shown in Figure 5.

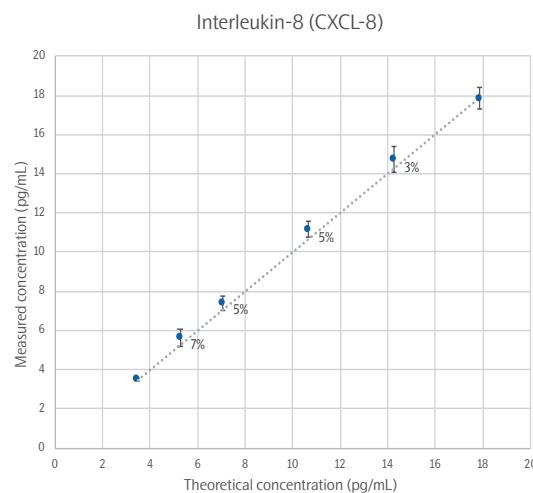



**Figure 5.** Assay readout specificity of the Olink platform. For each assay, specificity is confirmed by testing single antigens at endogenous levels against the complete 45-plex pool compared to each single antigen.

The low-level single elevated response outside the diagonal represents CCL3. CCL3 shares ~58% amino acid sequence identity with its homolog protein, CCL4. The high homology is confirmed by PEA and displayed as a cross-reactive signal where the CCL3 assay recognizes CCL4. However, the signal contribution is less than 1.5% at endogenous levels. The assay for CCL4 on the other hand does not recognize CCL3. None of the biomarker assays in the Olink Target 48 Cytokine panel revealed cross-reactive signal contributions from any of the other proteins tested.

### Endogenous interference

Endogenous interference from heterophilic antibodies, e.g. human anti-mouse antibody (HAMA), and rheumatoid factor is known to cause problems in some immunoassays. Evaluation of the potential impact of this specific interference was investigated during the validation of previous panels. No interference due to HAMA or RF was detected for any of the samples in previously tested panels, indicating sufficient blocking of these agents (data not shown).




**Figure 6.** Endogenous interference. Levels tested for hemolysate were 0.23–15 g/L hemoglobin. The highest hemolysate concentration translates to about 10% hemolysis.

Bilirubin, lipids and hemolysate, are plasma and serum components that are known to interfere with some analytical assays. These were evaluated for potential impact on the Olink assays at different added concentrations. An example of the hemolysate levels tested is shown in Figure 6. These additions represent different patient health conditions and/or sample collection irregularities. In 7 out of 45 assays, altered signal was observed by the addition of hemolysate. The reason is most likely due to the specific analytes leaking out of the disrupted blood cells. A concentration of 15 g/L of hemolysate represents 10% hemolysis of a sample. Table 1 reports the highest concentration of hemolysate that does not have an impact on assay performance. Interference by bilirubin and lipids has previously been evaluated, and disturbance was only observed at extreme levels corresponding to 8 or 10 times normal values<sup>3,4</sup>. This test was therefore not repeated for Olink Target 48 Cytokine.

### Linearity

Linearity was assessed in true matrix conditions by diluting one sample in another sample. A native plasma sample containing a relatively high endogenous level of the target protein is mixed with a native plasma sample containing a relatively low level of the protein, at different ratios, to give four equally spaced intermediate concentrations. Native samples were chosen to obtain as wide a range as possible, requiring several different sample combinations to be included in the test. The difference between the “theoretical” concentration and the “measured” concentration was analyzed. The expected (theoretical) concentrations were based on the measured concentration of the highest and lowest sample, and the theoretically calculated expected concentrations for the intermediate data points, (see Figure 7). For all but 7 assays, data within LOQ were obtained and the average accuracy over all assays was < 20%.



**Figure 7.** The difference between the “theoretical” concentration and the “measured” concentration.

## References

1. Assarsson E, Lundberg M, Holmquist G, Björkesten J, Bucht Thorsen S, Ekman D, Eriksson A, Rennel Dickens E, Ohlsson S, Edfeldt G, Andersson AC, Lindstedt P, Stenvang J, Gullberg M, Fredriksson S. Homogenous 96-Plex PEA Immunoassay Exhibiting High Sensitivity, Specificity, and Excellent Scalability. *PLoS One* April (2014). doi: 10.1371/journal.pone.0095192.
2. Lundberg M, Eriksson A, Tran B, Assarsson E, Fredriksson S. Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low abundant proteins in human blood. *Nucleic Acid Res* June (2011). doi: 10.1093/nar/gkr424.
3. <http://emedicine.medscape.com/article/2074115-overview>
4. <http://www.nlm.nih.gov/medlineplus/ency/article/003479.htm>

## Technical support

For technical support, please contact us at [support@olink.com](mailto:support@olink.com).



[www.olink.com](http://www.olink.com)

For Research Use Only. Not for Use in Diagnostic Procedures.

This product includes a license for non-commercial use of Olink products. Commercial users may require additional licenses. Please contact Olink Proteomics AB for details. There are no warranties, expressed or implied, which extend beyond this description. Olink Proteomics AB is not liable for property damage, personal injury, or economic loss caused by this product.

The following trademarks are owned by Olink AB: Olink® and Olink Bioscience™.

This product is covered by several patents and patent applications including US 6,511,809, US 7,306,904 and related US and foreign patents.

© Copyright 2020-2021 Olink Proteomics AB. All third party trademarks are the property of their respective owners.

Olink Proteomics, Dag Hammarskjölds väg 52B, SE-752 37 Uppsala, Sweden

1134, v1.1, 2021-06-17

## Validation data

# Olink® Target 48 Immune Surveillance

## Introduction

Olink® Target 48 Immune Surveillance is a reagent kit measuring 44 well-established protein biomarkers relevant in inflammation, immune response, immuno-oncology and infectious diseases simultaneously. Olink Target 48 Immune Surveillance has been developed without any human plasma components. The analytical performance of the product has been carefully validated and the results are presented below.

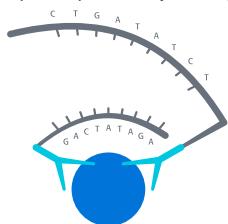
## Technology

The Olink reagents are based on the Proximity Extension Assay (PEA™) technology<sup>1-2</sup>, where oligonucleotide labeled antibody probe pairs are each allowed to bind to their respective target protein present in the sample. Following hybridization of the matched oligo sequences, a PCR reporter sequence is formed by a proximity-dependent DNA polymerization event. These reporter sequences are then amplified, and subsequently detected and quantified using real-time PCR. The assay is performed in a 48-plex format without any need for washing or dilution steps (see Figure 1), and results can be reported in both standard concentration units (pg/mL, default) and in relative concentration units (NPX, optional).

## Quality controls

Plasma-free internal and external controls have been developed by Olink to enable data normalization and quality control. These have been designed to enable monitoring of the technical performance of each run, as well as the individual performance of each sample, providing information at each step of the Olink protocol (see Figure

1). The internal controls are added to each sample and include one Incubation Control, one Extension Control and one Detection Control. The Incubation Control (a non-human antigen) monitors all three steps starting with the immuno reaction. The Extension Control (an antibody linked to two matched oligonucleotides for immediate proximity that is independent of antigen binding) monitors the extension and readout steps and is used for data normalization across samples. Finally, the Detection Control (a synthetic double-stranded template) monitors the readout step. Samples that deviate from a pre-determined range for one or more of the internal control values will result in a warning in the Olink® NPX Signature software.


Eight controls are applied to each run. Triplicate of the Sample Control, duplicate of the Negative Control and triplicate of the Calibrator. The Calibrator is used in a second normalization step and is designed to improve inter-run precision, enabling optimal comparison of data derived from multiple runs and batches. The Sample Control is used to monitor and control the quality of reported output data by evaluating both accuracy and intra-run precision for all assays. Both the Sample Control and the Calibrator are composed of a pool of recombinant proteins, equivalent to the biomarkers targeted by the panel.

## Data analysis and protein concentration calculation

Data analysis was performed by employing a pre-processing normalization procedure. For each sample and data point, the corresponding Cq-value for the Extension control was subtracted, thus normalizing for technical variation within one run. Normalization between runs were then performed for each assay by subtracting the corresponding dCq-value for the median

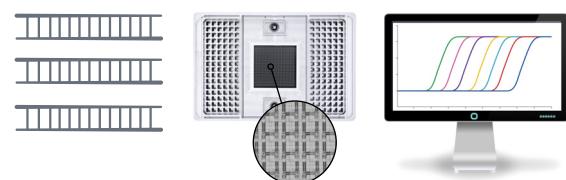
### Immuno reaction

Allow the antibody probe pairs to bind to their respective proteins in your samples.



Immuno/incubation control

### Extension and pre-amplification


Extend and pre-amplify the unique DNA reporter sequences by proximity extension.



Extension control

### Amplification and detection

Quantify each biomarker's DNA reporter using high throughput real-time qPCR.



Detection control

**Figure 1.** Olink assay procedure (above) and controls (below). The internal controls enable monitoring of the three core steps in the Olink assay and are used for quality control and data normalization. Readout is performed by using Olink® Signature Q100.

of the three Calibrator replicates from the dCq-values generated. The next step in the pre-processing procedure was to set the values relative to a bridging factor that bridges the data between different kit batches. The Normalized Protein eXpression (NPX) unit generated is on a log2 scale, where a larger number represents a higher protein level in the sample, typically with the background level at or close to zero. The protein concentration in standard concentration units (pg/mL) is obtained by fitting the NPX-value to a standard curve, describing the immunoassay shape, using four parameters in a non-linear logistic regression model. The standard curves are defined during the validation procedure and found via the product page ([olink.com/target48human](http://olink.com/target48human)). Three examples are shown in Figure 2.

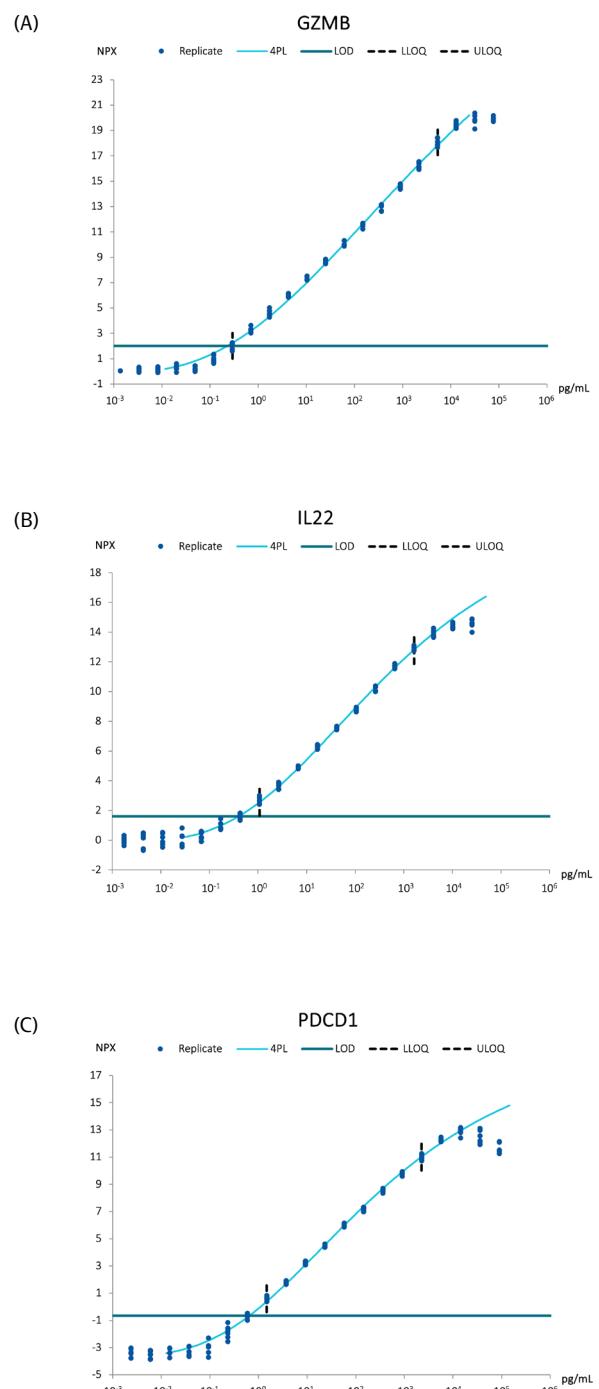
## Performance characteristics

### Sample information

Olink Target 48 Immune Surveillance was validated using 15 plasma samples from healthy, adult donors and 68 plasma samples from adult patients with diagnosed diseases like: Asthma, Atopic Dermatitis, Chronic Ischemic Heart Disease, Chronic Kidney Disease, Congestive Heart Failure, Coronary Artery Disease, COVID-19, Crohn's Disease, Hypertension, Leukemia, Lymphoma, Multiple Sclerosis, Myocardial Infarction, Neuroendocrine Carcinoma, Psoriasis, Rheumatoid Arthritis, Scleroderma, Stroke, Systemic Lupus Erythematosus and Type 2 Diabetes.

### Sample types

The ability to use different sample types was evaluated by collecting matched serum and EDTA from 15 healthy individuals, acid citrate dextrose (ACD) from 4 healthy individuals, and sodium heparin plasma samples from 4 healthy individuals. Table 1 summarizes the response values for 15 normal EDTA plasma samples expressed in pg/mL, as well as relative differences between the additional samples types compared to EDTA plasma. Variations observed between responses in heparin, citrate plasma and serum, as compared to EDTA plasma, were generally small and all assays should therefore function without limitation in these sample types.


### Analytical measurement

#### Detection limit

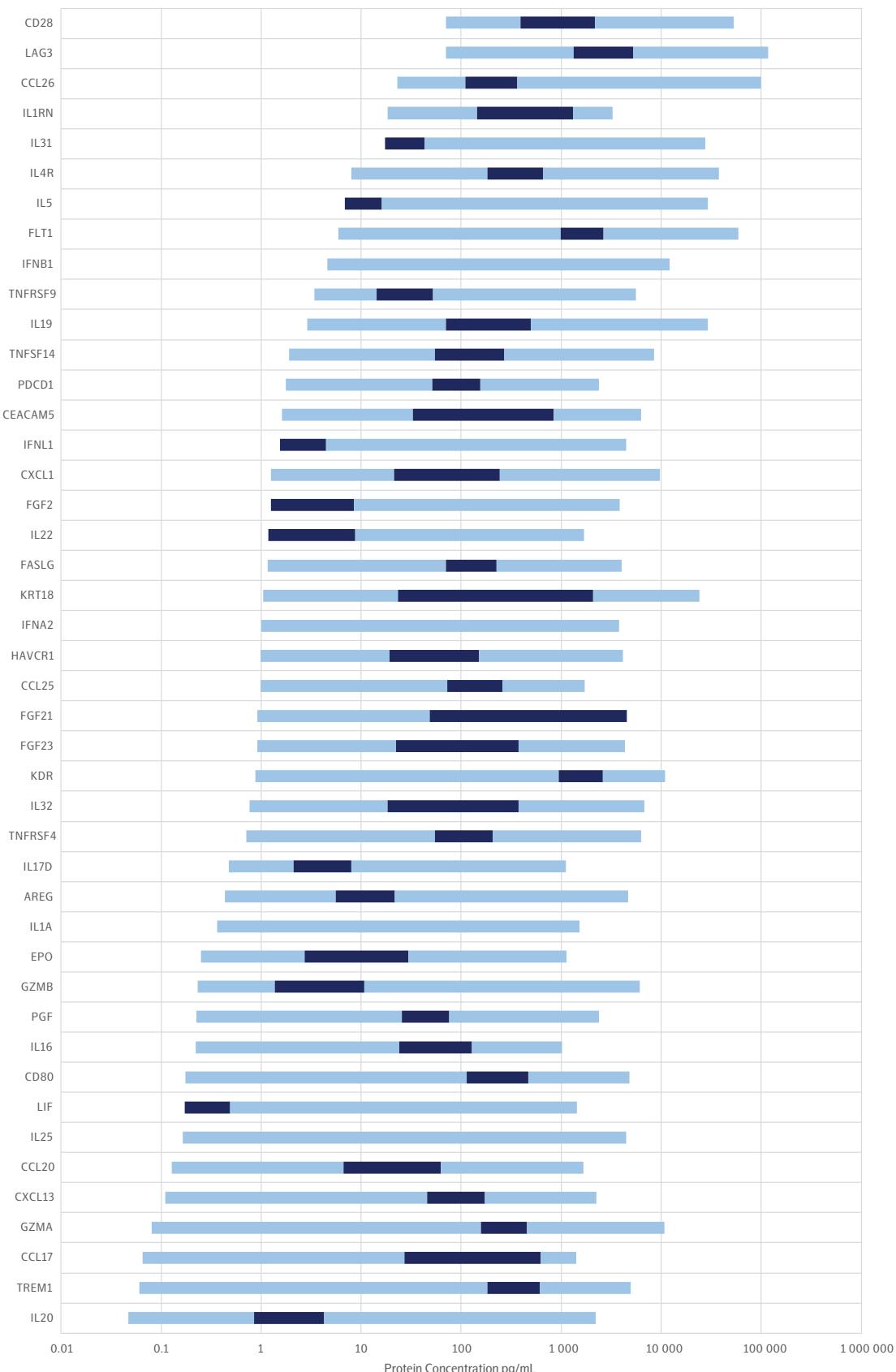
Standard curves were determined for the 44 biomarkers simultaneously in a multiplex format using recombinant proteins. Limit of detection (LOD) was defined as 3 standard deviations above background and reported in pg/mL (see Table 1 and Figure 2).

#### High dose hook effect

The high dose hook effect is a state of antigen excess relative to the reagent antibodies, resulting in falsely low values. In such cases, a significantly lower value can be reported, which leads to erroneous interpretation of results. Therefore, the hook effect was determined for each biomarker reported in pg/mL, see Table 1.



**Figure 2** Calibrator curves from 3 assays and their corresponding analytical measurement data.


#### Measuring range

The analytical measuring range was defined by the lower limit of quantification (LLOQ) and upper limit of quantification (ULOQ) and reported in order of log10, see Table 1. To ensure accurate quantification from lot to lot Olink establish release specifications for the limits of quantification (LOQ) for every manufactured lot. The analytical measuring data shown in Table 1 is based on the validation results during product development. The upper and lower limits of quantification (ULOQ and LLOQ, respectively) were

**Table 1.** Sample types; Normal and pathological plasma levels, relative to EDTA plasma, Endogenous interference, Analytical measuring range; Limit of Detection (LOD), Lower Limit of Quantification (LLOQ), Upper Limit of Quantification (ULOQ), High Dose Effect (Hook), Range, and Precision indicative of assay performance are shown for the 44 protein biomarkers. Not available, NA.

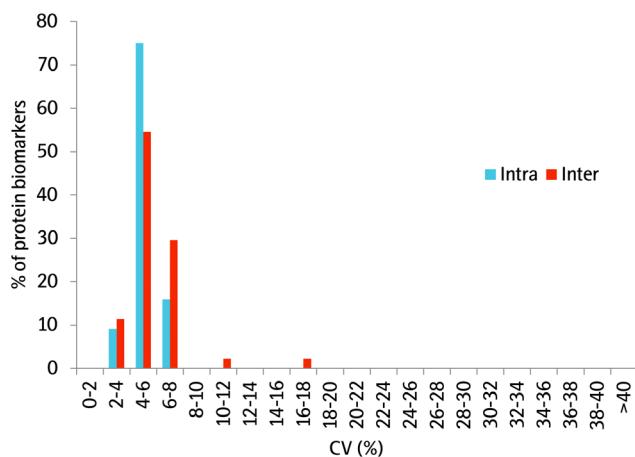
| Target                                                              | Sample types | Endogen. interference | Analytical measuring range   |                    |                                    |         | Precision                   |     |         |         |            |       |       |        |         |       |       |       |
|---------------------------------------------------------------------|--------------|-----------------------|------------------------------|--------------------|------------------------------------|---------|-----------------------------|-----|---------|---------|------------|-------|-------|--------|---------|-------|-------|-------|
|                                                                     |              |                       | Normal plasma levels (pg/mL) |                    | Pathological plasma levels (pg/mL) |         | Relative to EDTA plasma (%) |     | (mg/mL) | (pg/mL) |            | log10 | % CV  |        |         |       |       |       |
| Protein name (gene name)                                            | UniProt No   | 10th %tile<br>n=15    | Median                       | 90th %tile<br>n=15 | 10th %tile<br>n=68                 | Median  | 90th %tile<br>n=68          | ACD | Heparin | Serum   | Hemolysate | LOD   | LLOQ  | ULOQ   | Hook    | Range | Intra | Inter |
| Amphiregulin (AREG)                                                 | P15514       | 6.01                  | 7.58                         | 14.60              | 5.03                               | 7.86    | 15.80                       | 71  | 82      | 112     | 15         | 0.43  | 0.43  | 4680   | 10150   | 3.99  | 5     | 5     |
| C-C motif chemokine 17 (CCL17)                                      | Q92583       | 35.07                 | 72.65                        | 382.50             | 34.60                              | 116.71  | 436.99                      | 26  | 121     | 439     | 15         | 0.03  | 0.07  | 797    | 4260    | 3.98  | 4     | 6     |
| C-C motif chemokine 20 (CCL20)                                      | P78556       | 10.03                 | 13.98                        | 26.69              | 4.93                               | 11.26   | 27.36                       | 80  | 72      | 57      | 15         | 0.04  | 0.13  | 1603   | 8551    | 4.02  | 5     | 6     |
| C-C motif chemokine 25 (CCL25)                                      | O15444       | 73.39                 | 107.15                       | 171.98             | 69.64                              | 113.18  | 156.93                      | 77  | 85      | 102     | 15         | 0.56  | 0.99  | 1472   | 8105    | 3.11  | 5     | 6     |
| C-C motif chemokine 26 (CCL26)                                      | Q9Y258       | 101.73                | 148.78                       | 191.28             | 67.57                              | 135.52  | 298.95                      | 61  | 94      | 66      | 15         | 22.98 | 22.98 | 99690  | 1317825 | 3.59  | 7     | 6     |
| C-X-C motif chemokine 13 (CXCL13)                                   | O43927       | 48.08                 | 57.53                        | 98.84              | 27.42                              | 60.91   | 202.26                      | 75  | 53      | 60      | 15         | 0.11  | 0.11  | 2080   | 34151   | 4.24  | 6     | 5     |
| Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) | P06731       | 40.65                 | 117.89                       | 470.94             | 32.51                              | 100.38  | 284.09                      | 79  | 96      | 100     | 15         | 1.61  | 1.61  | 5469   | 35394   | 3.55  | 5     | 5     |
| Erythropoietin (EPO)                                                | P01588       | 3.64                  | 6.31                         | 20.34              | 4.17                               | 9.49    | 22.19                       | 81  | 99      | 104     | 15         | 0.08  | 0.25  | 1097   | 2496    | 3.59  | 4     | 4     |
| Fibroblast growth factor 2 (FGF2)                                   | P09038       | 1.81                  | 3.90                         | 7.02               | 4.27                               | 20.37   | 82.64                       | 65  | NA      | 283     | 15         | 0.47  | 1.25  | 3838   | 21096   | 3.50  | 6     | 5     |
| Fibroblast growth factor 21 (FGF21)                                 | Q9NSA1       | 59.33                 | 120.40                       | 585.74             | 42.11                              | 115.21  | 329.91                      | 74  | 81      | 66      | 15         | 0.46  | 0.92  | 4485   | 54779   | 3.55  | 4     | 4     |
| Fibroblast growth factor 23 (FGF23)                                 | Q9GZV9       | 25.68                 | 42.33                        | 173.29             | 19.28                              | 31.44   | 110.20                      | 75  | 96      | 31      | 15         | 0.37  | 0.92  | 3942   | 22592   | 3.56  | 6     | 4     |
| Granzyme A (GZMA)                                                   | P12544       | 158.83                | 217.50                       | 259.90             | 173.48                             | 245.52  | 429.20                      | 78  | 95      | 103     | 7.5        | 0.08  | 0.08  | 10255  | 121626  | 5.03  | 4     | 6     |
| Granzyme B (GZMB)                                                   | P10144       | 2.39                  | 3.83                         | 6.39               | 1.17                               | 7.73    | 22.62                       | 106 | 140     | 95      | 0.9        | 0.23  | 0.23  | 6137   | 77773   | 4.26  | 3     | 8     |
| Growth-regulated alpha protein (CXCL1)                              | P09341       | 29.57                 | 95.60                        | 134.63             | 43.84                              | 141.71  | 371.69                      | 40  | 281     | 587     | 15         | 0.37  | 1.26  | 9455   | 63503   | 3.86  | 5     | 5     |
| Hepatitis A virus cellular receptor 1 (HAVCR1)                      | Q96D42       | 20.67                 | 44.23                        | 117.16             | 19.23                              | 56.89   | 144.88                      | 81  | 94      | 105     | 15         | 0.32  | 0.99  | 3966   | 22978   | 3.61  | 5     | 6     |
| Interferon alpha-2 (IFNA2)                                          | P01563       | NA                    | NA                           | NA                 | 4.75                               | 5.91    | 54.54                       | NA  | NA      | NA      | 15         | 1.01  | 1.01  | 3789   | 52179   | 3.57  | 5     | 5     |
| Interferon beta (IFNB1)                                             | P01574       | NA                    | NA                           | NA                 | 7.81                               | 13.89   | 19.96                       | NA  | NA      | NA      | 15         | 1.47  | 4.58  | 12047  | 76863   | 3.38  | 6     | 7     |
| Interferon lambda-1 (IFNL1)                                         | Q8IU54       | 1.79                  | 1.96                         | 2.57               | 1.81                               | 2.48    | 9.27                        | NA  | NA      | 104     | 15         | 1.53  | 1.53  | 4478   | 23452   | 3.50  | 5     | 5     |
| Interleukin-1 alpha (IL1A)                                          | P01583       | NA                    | NA                           | NA                 | 0.40                               | 1.25    | 2.19                        | 237 | NA      | NA      | 15         | 0.12  | 0.36  | 1535   | 8828    | 3.57  | 4     | 5     |
| Interleukin-1 receptor antagonist protein (IL1RN)                   | P18510       | 147.28                | 293.16                       | 621.88             | 164.82                             | 298.43  | 737.53                      | 70  | 104     | 119     | 7.5        | 8.18  | 18.50 | 1944   | 345494  | 1.95  | 5     | 4     |
| Interleukin-17D (IL17D)                                             | Q8TAD2       | 1.99                  | 2.63                         | 4.59               | 1.73                               | 2.69    | 4.41                        | 93  | 49      | 75      | 15         | 0.16  | 0.47  | 1113   | 6022    | 3.37  | 4     | 5     |
| Interleukin-19 (IL19)                                               | Q9UHD0       | 90.25                 | 154.41                       | 324.80             | 81.32                              | 152.96  | 494.83                      | 77  | 112     | 123     | 15         | 0.84  | 2.90  | 28975  | 535368  | 4.10  | 5     | 5     |
| Interleukin-20 (IL20)                                               | Q9NYY1       | 1.15                  | 1.47                         | 3.01               | 0.73                               | 1.32    | 2.44                        | 83  | 79      | 95      | 15         | 0.05  | 0.05  | 2226   | 29709   | 4.65  | 8     | 10    |
| Interleukin-22 (IL22)                                               | Q9GZX6       | 1.58                  | 3.11                         | 6.27               | 1.93                               | 4.30    | 13.27                       | 80  | 89      | 100     | 15         | 0.40  | 1.18  | 1693   | 64000   | 3.18  | 6     | 7     |
| Interleukin-25 (IL25)                                               | Q9H293       | NA                    | NA                           | NA                 | NA                                 | NA      | NA                          | NA  | NA      | NA      | 15         | 0.16  | 0.16  | 4494   | 26182   | 4.39  | 5     | 4     |
| Interleukin-31 (IL31)                                               | Q6EBC2       | 19.29                 | 20.87                        | 24.60              | 20.76                              | 25.35   | 66.56                       | 97  | 98      | 97      | 15         | 6.13  | 17.36 | 27421  | 400000  | 3.18  | 5     | 5     |
| Interleukin-32 (IL32)                                               | P24001       | 23.91                 | 34.21                        | 51.04              | 18.28                              | 31.21   | 73.53                       | 67  | 95      | 99      | 15         | 0.76  | 0.76  | 6361   | 84510   | 3.89  | 5     | 4     |
| Interleukin-4 receptor subunit alpha (IL4R)                         | P24394       | 227.42                | 348.69                       | 438.73             | 221.18                             | 348.33  | 839.65                      | 112 | 111     | 107     | 15         | 7.91  | 7.91  | 37301  | 563270  | 3.60  | 7     | 3     |
| Interleukin-5 (IL5)                                                 | P05113       | 8.37                  | 8.70                         | 9.03               | 7.14                               | 15.34   | 100.21                      | 82  | 124     | 105     | 15         | 6.88  | 6.88  | 29438  | 168881  | 3.61  | 5     | 5     |
| Keratin, type I cytoskeletal 18 (KRT18)                             | P05783       | 22.61                 | 41.88                        | 430.19             | 32.79                              | 62.18   | 196.45                      | 72  | 70      | 96      | 15         | 1.05  | 1.05  | 22136  | 119980  | 4.31  | 7     | 7     |
| Leukemia inhibitory factor (LIF)                                    | P15018       | 0.31                  | 0.31                         | 0.31               | 0.19                               | 0.43    | 1.20                        | 86  | 110     | 119     | 15         | 0.06  | 0.17  | 1438   | 7992    | 3.90  | 5     | 6     |
| Lymphocyte activation gene 3 protein (LAG3)                         | P18627       | 1551.66               | 1953.19                      | 3189.30            | 1378.84                            | 2300.43 | 4511.09                     | 83  | 95      | 100     | 15         | 70.39 | 70.39 | 112334 | 1777613 | 3.17  | 4     | 17    |
| Placenta growth factor (PGF)                                        | P49763       | 27.31                 | 33.38                        | 43.46              | 25.41                              | 35.35   | 64.67                       | 74  | 74      | 99      | 15         | 0.08  | 0.22  | 2327   | 34356   | 3.98  | 4     | 5     |
| Pro-interleukin-16 (IL16)                                           | Q14005       | 31.41                 | 44.56                        | 87.89              | 32.20                              | 57.37   | 157.09                      | 73  | 97      | 112     | 3.8        | 0.22  | 0.22  | 885    | 4902    | 3.57  | 7     | 6     |
| Programmed cell death protein 1 (PDCD1)                             | Q15116       | 54.50                 | 65.23                        | 102.40             | 42.59                              | 74.50   | 157.07                      | 78  | 88      | 98      | 15         | 0.65  | 1.75  | 2245   | 14188   | 3.19  | 5     | 3     |
| T-cell-specific surface glycoprotein CD28 (CD28)                    | P10747       | 394.29                | 583.44                       | 926.56             | 386.38                             | 567.16  | 959.71                      | 66  | 92      | 109     | 15         | 70.68 | 70.68 | 51195  | 693717  | 2.76  | 5     | 6     |
| T-lymphocyte activation antigen CD80 (CD80)                         | P33681       | 158.01                | 203.62                       | 266.81             | 119.85                             | 228.31  | 478.02                      | 75  | 95      | 103     | 15         | 0.17  | 0.17  | 4361   | 24441   | 4.39  | 6     | 7     |
| Triggering receptor expressed on myeloid cells 1 (TREM1)            | Q9NP99       | 188.67                | 278.05                       | 415.55             | 166.36                             | 269.35  | 480.49                      | 65  | 83      | 107     | 15         | 0.06  | 0.06  | 4371   | 64000   | 4.78  | 6     | 5     |
| Tumor necrosis factor ligand superfamily member 14 (TNFSF14)        | O43557       | 58.29                 | 78.23                        | 116.00             | 56.38                              | 100.07  | 216.23                      | 65  | 117     | 244     | 15         | 1.90  | 1.90  | 8189   | 112427  | 3.53  | 4     | 5     |
| Tumor necrosis factor ligand superfamily member 6 (FASLG)           | P48023       | 77.34                 | 111.41                       | 148.91             | 74.94                              | 122.96  | 182.94                      | 90  | 90      | 101     | 15         | 0.38  | 1.16  | 3788   | 54071   | 3.49  | 4     | 5     |
| Tumor necrosis factor receptor superfamily member 4 (TNFRSF4)       | P43489       | 61.77                 | 82.35                        | 107.11             | 57.63                              | 88.93   | 195.10                      | 78  | 96      | 108     | 15         | 0.27  | 0.71  | 6081   | 33479   | 3.88  | 4     | 5     |
| Tumor necrosis factor receptor superfamily member 9 (TNFRSF9)       | Q07011       | 14.27                 | 21.41                        | 33.18              | 14.14                              | 22.37   | 97.84                       | 68  | 86      | 109     | 15         | 1.13  | 3.42  | 5507   | 12234   | 3.14  | 4     | 5     |
| Vascular endothelial growth factor receptor 1 (FLT1)                | P17948       | 1065.61               | 1187.89                      | 1397.03            | 1033.46                            | 1330.58 | 2015.70                     | 79  | 63      | 95      | 15         | 5.92  | 5.92  | 56454  | 400000  | 3.98  | 6     | 7     |
| Vascular endothelial growth factor receptor 2 (KDR)                 | P35968       | 1005.22               | 1307.56                      | 1612.40            | 1016.79                            | 1344.98 | 1664.69                     | 77  | 97      | 103     | 15         | 0.88  | 0.88  | 8289   | 43940   | 3.88  | 4     | 5     |

### Dynamic range and plasma levels



**Figure 3** Distribution of analytical measuring range, defined by the lower and upper limits of quantification (LLOQ-ULOQ), and normal plasma levels (darker bars) for the 44 protein biomarkers.

calculated and reported in pg/mL with the following trueness and precision criteria relative error <30% and CV <30%, of back-calculated values (see Table 1). Separate calibrator curves were defined for each assay and can be accessed via the product page ([olink.com/target48human](http://olink.com/target48human)) together with the analytical data for the assay. Three examples of assays and their analytical data are shown in Figure 2. The distribution of measuring ranges of the 44 assays and endogenous plasma levels for healthy donors are shown in Figure 3.


## Precision

### Repeatability

Inter-run (between run) and intra-run (within run) CV were assessed by evaluating triplicate measurements of the Sample Control on each plate, based on 17 plate runs performed by three different operators. Each operator performed a minimum of three runs.

Inter-run CV values were calculated between runs done by the same operator. The inter-run CV reported here is the average of the three operators' CV. CV calculations were performed on data in pg/mL for the 44 analytes for which response levels within LOQ were detected, see Table 1.

Across the 44 assays, the mean intra-run and inter-run variations observed were 5% and 6%, respectively. The distribution of both intra-run and inter-run variations are shown in Figure 4.



**Figure 4.** Distribution of intra-run and inter-run variations of Olink® Target 48 Immune Surveillance.

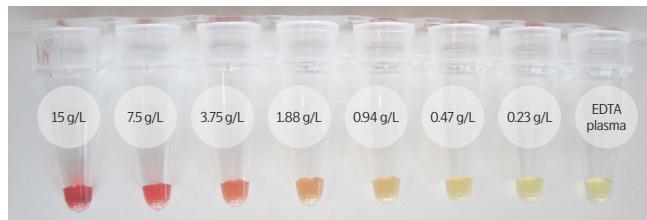
### Reproducibility

To determine CV inter-operator (between operators) and CV inter-site (between sites), identical sample plates were sent to 6 laboratories (sites) together with Olink Target 48 Immune Surveillance kits. Ten individual plasma samples (in triplicate) and a pooled plasma sample were provided. Two operators per site executed one experiment each, using one sample plate each. Inter-operator and inter-site CV were calculated based on these samples and Olink's Sample Control, provided with the kit. All samples and controls showed good CV between operators and sites (see Table 2).

**Table 2.** The average CV intra-run was determined for each assay on each run (n=12), and values shown represent the average of all runs. CV inter-run is the average of all runs. Inter-operator CV was determined per site. CV inter-operator is the average of inter-operator CV from all sites. The CV inter-site was determined pairwise, between all sites. CV inter-site is the average of all pairwise calculations.

| %CV                   | Plasma samples | Pooled plasma | Sample Control |
|-----------------------|----------------|---------------|----------------|
| <b>Intra-run</b>      | 7.7            | 8.2           | 7.2            |
| <b>Inter-operator</b> | 7.5            | 7.3           | 4.0            |
| <b>Inter-site</b>     | 8.4            | 8.7           | 5.2            |

In addition to Olink Analysis Service laboratory in Uppsala, Sweden and in Boston, US, there are many Olink-certified core laboratories around the world running Olink panels (see [www.olink.com/service](http://www.olink.com/service) for details). Our experience over several years is that inter-site reproducibility is very good provided that operators are properly trained. For more information please contact [support@olink.com](mailto:support@olink.com).

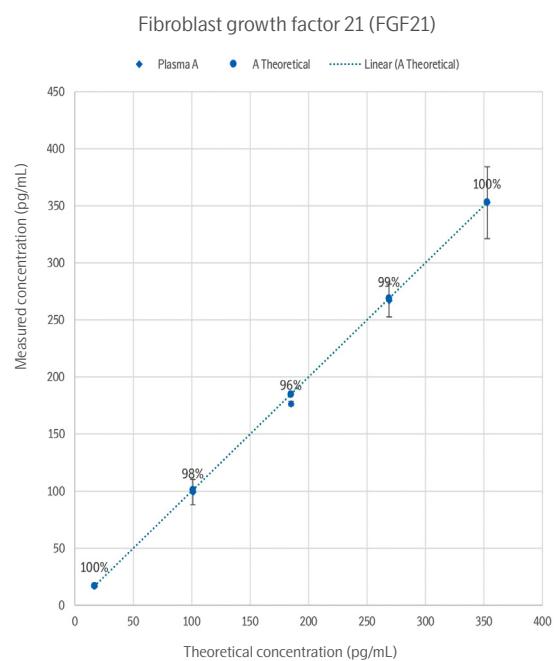

## Analytical Specificity

### Assay specificity

To test the specificity of the PEA probes of Olink Target 48 Immune Surveillance, all antibodies used were tested for cross reactivity against all proteins targeted. To confirm that the antibodies implemented into Olink Target 48 Immune Surveillance are specific for their targets, detection of the 44 proteins were determined applying recombinant proteins solitary to the multiplex. These tests revealed that only one assay showed minimal cross-binding to another protein, with 0.2% (CCL17 antibodies detecting CCL25). No other assays had any unspecific signal.

### Endogenous interference

Bilirubin, lipids and hemolysate, are plasma and serum components that are known to interfere with some analytical assays. An example of the hemolysate levels tested is shown in Figure 5. These additions represent different health conditions and/or sample collection irregularities. In 4 out of 44 assays, altered signal was observed by the addition of hemolysate. The reason is most likely due to the specific analytes leaking out of the disrupted blood cells. A concentration of 15 g/L of hemolysate represents 10% hemolysis of a sample. Table 1 reports the highest concentration of hemolysate that does not have an impact on assay performance




**Figure 5.** Endogenous interference. Levels tested for hemolysate were 0.23–15 g/L hemoglobin. The highest hemolysate concentration translates to about 10% hemolysis.

Interference by bilirubin and lipids has previously been evaluated, and disturbance was only observed at extreme levels corresponding to 8 or 10 times normal values<sup>3,4</sup>. This test was therefore not repeated for Olink Target 48 Immune Surveillance.

### Linearity

Linearity was assessed in true matrix conditions by diluting one sample in another sample. A native plasma sample containing a relatively high endogenous level of the target protein is mixed with a native plasma sample containing a relatively low level of the protein, at different ratios, to give equally spaced intermediate concentrations. Native samples were chosen to obtain as wide a range as possible, requiring several different sample combinations to be included in the test. The difference between the “theoretical” concentration and the “measured” concentration was analyzed. The expected (theoretical) concentrations were based on the measured concentration of the highest and lowest sample, and the theoretically calculated expected concentrations for the intermediate data points, (see Figure 6).



**Figure 6.** The difference between the “theoretical” concentration and the “measured” concentration.



## References

1. Assarsson E, Lundberg M, Holmquist G, Björkesten J, Bucht Thorsen S, Ekman D, Eriksson A, Rennel Dickens E, Ohlsson S, Edfeldt G, Andersson AC, Lindstedt P, Stenvang J, Gullberg M, Fredriksson S. Homogenous 96-Plex PEA Immunoassay Exhibiting High Sensitivity, Specificity, and Excellent Scalability. *PLoS One* April (2014). doi: 10.1371/journal.pone.0095192.
2. Lundberg M, Eriksson A, Tran B, Assarsson E, Fredriksson S. Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low abundant proteins in human blood. *Nucleic Acid Res* June (2011). doi: 10.1093/nar/gkr424.
3. <http://emedicine.medscape.com/article/2074115-overview>
4. <http://www.nlm.nih.gov/medlineplus/ency/article/003479.htm>

## Technical support

For technical support, please contact us at [support@olink.com](mailto:support@olink.com).

**www.olink.com**

© 2024 Olink Proteomics AB.

Olink products and services are For Research Use Only and not for Use in Diagnostic Procedures.

All information in this document is subject to change without notice. This document is not intended to convey any warranties, representations and/or recommendations of any kind, unless such warranties, representations and/or recommendations are explicitly stated.

Olink assumes no liability arising from a prospective reader's actions based on this document.

OLINK, NPX, PEA, PROXIMITY EXTENSION, INSIGHT and the Olink logotype are trademarks registered, or pending registration, by Olink Proteomics AB. All third-party trademarks are the property of their respective owners.

Olink products and assay methods are covered by several patents and patent applications <https://www.olink.com/patents/>.

1485, v1.0, 2024-05-31